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Abstract

The classical theory of longitudinally slot-
ted walls, which substitutes an approximate hamo-
geneous wall boundary condition for the true
mixed conditions, is extended in several respects.
Based on recent experimental findings at the FFA,
an inviscid flow model is adopted in which the
outgoing slot flow penetrates into the plenum
chamber as a thin jet, while the re-entering
flow, admitting quiescent air from the plenum
chamber into the test section, induces a longi-
tudinal separation bubble at plenum pressure
along the slot and adjacent parts of the test
section wall, The three-dimensional analysis,
based on the assumption that the slots are narrow,
retains quadratic cross-flow terms in the pres-
sure equation and allows the slots to be few in
number and have non-uniform distribution and ge-
ometry. A family of homogeneous boundary condi-
tions is obtained, each of successively higher
accuracy. Application to the design of inter-
ference-free transonic test sections is discuss-
ed. Unsteady effects are also considered.

1. Introduction

It is a remarkable fact that theory plays a
very minor roll in the design and use of slotted
transonic test sections, in particular when one
considers that the theory was already well devel-
oped at an early stage', There might be several
reasons for this but one of them seems to be that
the flow models, mainly inviscid ones, had not
been tested by careful experiments, while incon-
sistencies were alleged to appear in trying to
apply the theoretical results to practical wind
tunnel flows.. Therefore, it seems, reliance was
placed on empirical methods, determining the
slot width so as to minimize choking effects
around Mach one and accepting as free-stream
conditions the upstream conditions in the empty
test section as calibrated against the plenum
pressure. It became a widespread belief that
viscous effects of an unknown and complicated
nature are present in the slot flow and that
therefore an empirical approach is all there is
available, In consequence the development of
the theory came to a virtual standstill,

In a recent experimental investigation of
slot flows® it has been found that under typical
test conditions the slot flow is not necessarily
dominated by viscosity and that therefore one
can define an inviscid flow model which is rea-
sonably close to reality. This model, which is
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not as simple as some of the early ones, will be
set down in the next section. For a fuller dis-
cussion of the problems involved see Ref. 4 and
references given therein,

Our present task is to base on this model a
general inviscid theory for the wall interfer-
ence caused by a slotted wall., In the classi-
cal theory of this ki_nds"e,based on the slender-
body approximation, a description is obtained of
the combined effect of the mixed boundary condie
tions at the slots and slats in the form of a
far simpler, homogeneous boundary condition, re-
lating the average pressure difference across
the wall to the average streamline curvature
normal to the wall, The simplification is made
possible by postulating a large number of simi-
lar slots uniformly distributed over the inter-
fering wall.

In order to minimize any viscous effects,
and possibly for other reasons, it is desirable
to keep the number of slots small., Furthermore,
if the slots are few in number their proper lo-
cation might become important when minimizing
the wall interference, Consequently there is a
great need for freeing the classical theory from
its inherent restrictions while keeping its sim-
plicity. We shall achieve this by employing a
modified method of approximation, based on the
much less restrictive assumption that the slot
width is small compared to the distance between
slots. From the case of uniform slot distribu~
tion this is known to be a workable approach®?®,
In the present more general context it leads to
a straightforward application of the method of
matched asymptotic expansions.

In our analysis we shall aim at a fair level
of generality. This might for example facili-
tate later inclusion of corrections for viscous
effects., The main concern will be with three-
dimensional tests, the case of two-dimensional
tests being already treated?. Also, we shall
not exclude the case of unsteady flow, which is
clearly quite important in connection with os-
cillatory testing'. However, in the present
paper the applications of the theory will be re-~
stricted to a few very simple cases,

The theory turns out to produce not one but
a whole family of possible homogeneous boundary
conditions, each corresponding to a specific
degree of resolution of the details of the wall
flow as 'filtered' through the averaging proce-—
dure. The choice for any particular application
will have to be based on considerations of ac-
curacy. There is also some freedom in the me-
thod of applying the boundary conditions, de-
pending on the kind of problem to be solved. If
the slots are to be adjusted for zero interfer-
ence by employing measured wall pressure distri-
butions, a somewhat different type of boundary
condition will be required from if the adjustment
is to be based on a pre-computed interference-
free flow field, We shall return to this point
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in later sections as well as to the related
questions of how to define and compute wall inter-
ference corrections and how to use test section
calibrations,

2, An Inviscid Model for the Slot Flow

The slot flow model to be adopted is present-
ed in Fig. 1. In the upstream part of the test
section the flow is going outwards through the
slot into the plenum chamber, where it forms a
thin jet. The flow inside the slot is attached,
as indicated in cross section (a), amd separa-
tion occurs at the sharp slot edges on the plemm
side. Above the model the slot flow turns back,
leaving the jet to contimue on its own into the
interior of the plenum chamber. This 'splitting'
of the fast air into two separate streams is
shown beginning at section (b). At (c) the fast
air in the slot, having entered farther upstream,
is returning to the test section. At (d) the
fast air has left the slot and behind it appears
a 'bubble' of quiescent air at plenum pressure,
the boundary of which is expanding into the test
section flow. Typically, the bubble is narrow
and extends along the slot. Presumably it col-
lapses onto the slot farther downstream if the
cross flow turns back again towards the wall.
What happens if it is struck by a shock wave from
the model is not known.

This is the picture of the slot flow arrived
at in Ref. 4, The description leaves undecided
whether the high speed air returning from the
slot to the test section is a vorticity-carrying
slug, as in (c1) and (d1), or whether it expands
around the slot edges without separation, as in
(c2) and (d2). The experimental evidence in Ref.
4, although not quite conclusive, points to the
former alternative. It might well be that both
types of flow may occur. In order to avoid com-
plications at this stage we shall assume the
second type of flow, but when developing the
analysis we shall keep the altermative in mind
as well as the possible need for viscous correc-
tions,
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Possible inviscid flow patterns (not to scale).
fast air from the slot.

In order to translate the slot flow model ine
to a set of boundary conditions to be used with
the flow equations further simplifications must
be introduced., First of all there is no need to
consider in detail the development of the jet in-
side the plenum chamber. From the point of view
of the slot flow it should be sufficient to des-
ignate a surface Sp, across the slot exit on
which the plemum pressure may be taken to act.

It must also be specified how the fast air in
the slot is split off to return to the test sec-
tion: making the obvious choice, we shall as-
sume that the downstream end of §,, coincides
with the upstream end of the free surface S_,
which is the boundary between the fast air and
the quiescent plenum air (see Fig. 1). Thus %)o
and S together form a surface on which we have
plenum pressure., Obviously there is no need, nor
any real possibility, to determine S.,,, and hence
Sp in its subsequent development, wigh any ac-
curacy. We shall interpret this as a licence to
make a choice which renders the analysis simple,

Having so far tacitly assumed that the flow
is steady, we must also consider how the flow
model can be generalized to become applicable to
unsteady flows. Obviously, the free surface Sp
must be allowed to move. The possibility that
pressure waves propagate inside the plenum cham-
ber must also be considered., Consequently, the
pressure on Spo+ Sp cannot be taken to be known
in advance. Tﬁese are serious complications
which can perhaps not be handled without making
further simplifications, such as assuming the
unsteadiness to be a small perturbation of a
steady flow,

3. Assumptions and Basic Equations

The test section wall, before the slots are
introduced, is taken to be a cylinder, S
(Fig. 2). The longitudinal slots, numbered
1 to N, are connected to plenum chambers with
quiescent air at prescribed pressures pil)(i =
1,2,..,N). The x-axis, parallel to S,, » points



in the flow direction., The radius vector r is
orthogonal to the x-axis., The hydraulic radius
of 8y is employed as the unit of length.
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Fig. 2. Slotted test section,

The model and its wake are located within
the cylinder S, , parallel to S The flow is

w
taken to be inviscid between S, and Sy, as
well as in the slots and plenum chambers., The

flow of fast air will be described by a small
irrotational perturbation of a uniform reference
flow parallel to the x-axis (at density
pressure p_ , velocity U and Mach number M),
the perturbatlon to be considered as produced by
the distribution of normal velocity set up by the
model on Sy . This distribution is of course
not known in advance, Our ignorance of the flow
inside 8, is the reason for the wind tunnel
test to begin with, but from the shape of the
model one can often estimate it with suffi-
cient accuracy for computing the wall interfer-
ence, This we assume to be so and choose for
the reference state the free-stream state at
which the estimate is made,

Let U- ¢(x,£,t) be the perturbation veloc-
ity potential, normalized to be zero in the ref-
erence flow. To first order for transonic flow
it satisfies the following differential equation
between S and the outer boundary of the fast
airs

2
Ao = EM2—1+M2(Y+1)cpx]cp + 2

M
U ‘th";q’tt‘ (1)

pd
Here A is the Laplacian in planes x = constant,
while vy is the ratio of specific heats in the

reference state. The inner boundary condition
for ¢ is at a point P

on S P, =

m F(p,t) ,

(2)
where n denotes differentiation in the normal
direction and F is the normal velocity distri-
bution (which we have assumed known). The outer
boundary condition on solid surfaces adjacent to
fast air is similar:
on S
w

between slots: P, = o,

H(p) . (3)
H wvanishes wherever the walls of the slots are
parallel, (More generally, we could easily al-
low ¢, to be non-vanishing on S, as well,
thus accounting for small deviations from cylin-
drical geometry as well as for the displacement
effect of wall boundary layers,)

internally in slots: P, =

The remaining outer boundary condition in-
volves the pressure, In the present approxima-
tion the Bernoulli equation is
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(#)

where Grad denotes the gradient operator in a
plane x = constant, The quadratic cross-flow
term is needed only in the slot regions, where
the cross~flow velocity might be considerably
larger than elsevhere, In the case of steady
flow, the jet and free~surface boundary con-

1 1
PP = = Q, U (G @, +9,+ 5 Grad® 9)

dition therefore takes the form
on S +S_ : @ d Grad®g = - g
po p ° x 2 ’

(i)
. P, -P
5 (i) =_P 0 (i
Q,, U?

T,e0a,N)

(5)

The corresponding condition for unsteady flow
will be discussed later.

In order to formulate an upstream boundary
condition we shall assume that the slots all be-
gin at x = x and that their widths increase
smoothly from zero. With a stretch of parallel
walls between the contraction and the beginning
of the slots — since F dis likely to be small
that far upstream — the flow at x = x, ought
to be uniform (except for receding waves in the
unsteady case). We shall in fact take this to
be so and prescribe as an upstream boundary con-
dition for steady flow that ¢ takes a constant
value, ¢, say, on the plane x = x,. At the same
time we must adjust F +to vanish at x,. Note
that the Mach number M of the entrance flow
is a controllable test parameter which deter-
mines a particular value for ¢, . We shall not
specify any downstream boundary condition, only
assume that the slotted part of the test section
is long enough for the conditions at the down-—
stream end not to influence the flow at the
model.

In the present approach the wall interfer-
ence is obtained, obviously, by subtracting from
@ on Sy the corresponding distribution ob-
tained with unbounded flow outside S; (using
the same reference flow) in precisely the situa-~-
tion prescribed when estimating F. If we are
to minimize the interference we must explore the
influence on ¢ of the several test parameters
at our disposal. The mixed form of the set of
outer boundary conditions for ¢ constitutes a
major difficulty when performing this task.,

4, The Method of Approximation

In order to overcome this obstacle we shall
introduce an approximation @(x,r,t) for ¢ ,
satisfying the same differential equation and
the same inner boundary condition, but a new
outer boundary condition. This boundary condi-
tion ought to be as simple as possible from the
point of view of computlng ©, consistent with the
requirement that @ must be closely equal to ¢
on Sy (where the interference is to be computed),
Thus, the new boundary condition shall be re-
quired to be homogeneous and local in the sensec
that it is a regular functional relationship
between © and its normal derivative over the
entire boundary S, , while values of @ or g
inside Sy , e.g. on S, , must not be explicit-
1y present, Clearly the boundary conditions for
¢ are not homogeneous in this sense, although
they are local.




The potentials and ¢ are expected to
be nearly equal almost everywhere, in particular
in the neighbourhood of S, , and to be essential.
ly different only where slots are located., There
the cross-flow derivatives, but not the poten-
tials themselves or their derivatives with re-
spect to x or t,are expected to be much dif-
ferent, Noting that the differential equation
(1) contains cross-flow derivatives only in the
left-hand member, we arrive at our basic method
of approximation: we neglect the difference
between ® and ¢ in the right-hand member and
postulate that

A(F-9)=o0. (6)
This is of course the slender-body approximation
applied to the slot flow. There is additional
support for its validity in that in transonic
flow, and at low frequencies, all terms in the
right-hand member of (1) are small. But this
also points to the danger that the approximation
(6) may not be very good near shock waves and
high-frequency receding waves. At best the ap-
proximation can be verified a posteriori.

The differential equation (6) can be inte-
grated immediately to give

9=9+¢-8 , (7)
where ¢(£;x,t) and 5(£;X,t) are two-dimen-
sional harmonic functions satisfying the same
type of boundary condition as ¢ and @. More
specifically, ¢ is taken to satisfy an inner
condition (25 with the normal derivative pre-
scribed as f(P,t) on S, (f being similar
to,but in general different from F) and in addi-
tion to satisfy the condition (3) for the normal
derivative at the outer boundary as well as the
conditions (5) for the slot pressures (or a cor-
responding set for unsteady flow). In general
this will determine ¢ wuniquely in terms of f.
Similarly, § is taken to satisfy the same inner
boundary condition for the normal derivative as
¢ and a new homogeneous and local outer bound-
ary condition chosen so as to make § uniquely
determined and easy to calculate, rendering it
at the same time closely equal to ¢ on Shm -

If the outer boundary condition for 3 has
the required property of not containing f ex-
plicitly, then it might be eligible as the con-
dition defining ®. Let us assume this to be so
and solve Eq. (1) for @, applying the inner
boundary condition (2) together with the outer
boundary condition thus taken over from § .
This can be done without specifying f. We then
conclude from (7), assuming the basic approxima-
tion (6) to be true, that ¢ is closely equal
to ¢ on S, as it should be.

The crucial question is now whether ¢, as
approximated by (7), satisfies the outer boundary
conditions (3) and (5) to sufficient accuracy.
To verify this,choose f so as to make &, = @,
on Sy . The equality of ¢ and ¢ on Sy (m
virtue of the common boundary condition) is there-
by extended, approximately, to a neighbourhood
of Sy . Therefore, in consequence of (7), it
might be assumed that in a similar neighbourhood
(vhich is taken to include the slots) o= ¢ ,

Px = 06xs 9 = ¢ty Grad ¢ = Grad ¢, and also
that the free boundaries Sp coincide, Then
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@ satisfies the boundary conditions (3) and (5),
and the problem of computing ¢ on S;, as in-
fluenced by the test section wall, has been re-
duced to the simpler problem of computing ¢ .

Note that in this process it might be un-
necessary to compute ¢,f, or § , since none
of them is present in the boundary condition for
®. However, if we want to determine conditions
at the wall, for example wall pressures, then we
shall need to know ¢ there,

5. Conformal Mapping and Analytic
Continuation. Smoothing.

In order to arrive at the outer boundary con=
dition for ©® we must analyse ¢ and @ . They
are both two-dimensional harmonic functions in
regions with shapes independent of x. It is
therefore natural to perform a conformal mapping
of the amnular region between S, and 8§, in
each plane x constant, mapping the boundaries
onto concentric circles., In addition to other
simplifications this will permit us to reform-
ulate the inner boundary conditions for ¢ and
¢ by analytic continuation to be imposed at the
centire of the circles.

The mapping is scaled to leave the cross-
sectional area of S, invariant. Let (r,0)
be polar coordinates in the transformed plane.
Hence Sw is mapped onto the unit circle,

We now postulate that in analysing &(r,0;x,t)
it is sufficient to include only terms up to
including the order v in a Fourier expansion
with respect to © ., This is a decisive step: it
specifies a 'filter' which permits us, by choice
of v, to approximate ¢ by @ with controlla-
ble smoothness at the wall and precision at the
model. Then ¢ must have the form

v .
? = A fn r+d +% ‘:(A.cosje +B.sinjo)r Y +
° ot 3 J

(8)

= = i
+ (chosje+ Ejsin,je)r‘]_‘ ,

where the coefficients AO,

A,B,D.
are all functions of x and J J

and E,
Jg, J
The corresponding expression for ¢(r,8;x,t),
having the same singular structure at the origin,
is

v .
¢ = A in 4D +Z \:(A.cosje +B.sinjé)r™J +

(9)

. i :
+ (DJCOSJS+Ej51nJe)r 1+ s,

where the remainder ©§ , containing the harmonic
components required for describing details of
the slot flow, is O(xr" as r—0, In this
formulation the requirement of common singular
structure corresponds to the condition that the
® and ¢ have the same normal velocity on Shs
while the requirement that the outer boundary
condition for § shall make it closely equal to

¢ on S now takes the form
ﬁo = Do ; ﬁj = Dj ’
§3=Ej (i=1,2,4005v) . (10)



Once the outer boundary condition has been
established we can either use it directly to
solve the complicated transformed version of the
transonic differential equation, or transform it
back to the original geometry and there apply it
to the simpler original equation. The choice is
one of convenience in the numerical work., In
the following we shall be concerned only with
establishing the outer boundary condition in the
circular geometry.

6. Asymptotic Approximation for Narrow Slots

The fact that in practice slots are usually
narrow as compared to distances between slots
will be the basis for the continued analysis.
In this situation asymptotic expansion with re-
spect to the slot width as a small parameter
suggests itself as a useful method to be adopted.
Obviously, each slot will need its own 'inner'
expansion, scaled with the slot width, The
'outer' expansion will be concerned with the
overall flow on the scale of the test section
radius.

Fig. 3. Inner and outer flows.

In an inner expansion the slot will be lo-
cated alone in an infinite plane wall (Fig. 3).
In the outer expansion the test section wall
will be solid with sinks or sources located at
the points into which the slots have contracted,
The total flux of each sink or source will of
c se be equal to twice the corresponding flux
q (i = 1,2,...,N) through the slot (positive if
into the plenum chamber; flux unit = U times
test section radius). These fluxes are not known
in advance but depend on the plenum pressures p(l’
through the pressure conditions (5) at the bound-
aries Sj, and Sp + They will therefore have
to be obgained by matching the outer expansion
to each of the inner expansions. For a survey
of matching problems involving flow through
narrow slots see Ref, 12,

Leaving the inner expansions for later, we
shall first obtain an outer representation of ¢,
assuming the fluxes q'#’ to be known., This will
permit us to analyse ¢ and, in fact, to make
a first specification of the boundary condition
for ¢.

An elementary solution with a source at the
origin and a sink of double strength on the unit
circle at 9 = oW (F:.%. 4) is given by (12m) tnr-
(1/m)n D | vhere rW(r,8) is the distance
from the sink:

D =J 1-2r cos(e-e(i)) F 12, (11)
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Fig. 4. A source at the origin, a sink of

double strength on the unit circle.

It is easily shown that this solution has zero,
normal derivative on the unit circle (for 6% 6%).
We can therefore immediately write down the
outer representation of ¢ :

N
¢=1—(

) N .
z q(l)>£nr— 1z q‘l)znr(‘”)+ G(r,s). (12)
2M\ =1 Mi=1

The undetermined function G is harmonic in the
unit disk, except at the origin, and has zero
normal derivative at the outer boundary. Com-
parison with (9) shows that A = I q/2n  and
that

v . .
G=D_+% (Ajcosj9+ BJ.sian)(r_J+ rJ). (13)

j=1

To obtain ¢ we must expand the rest of ¢.
It is easy to show that

(14)

. v . . 1
mdfP=_ ¢ % cos[j(e—e(l))}r‘3+ O(ru+ ),
j=1

Hence

1 g (i) |
En_(fq )ednr + D +

+

1

1 ?q(i){ E % cos[j(e—e(i))]rj } +
i J

u . .
+ I (A,cosjo+ B.sinjo)(r™J + rd) =
j=1 J J

. v . .
oS %cos[j(e—e(l))]r‘]} . (15)

N .

1 (1)
p+=— 2 q in
w, 1 { J=1

i=

This gives immediately an important part of

the attempted outer boundary condition for & :

N . v .
r=1: § . =+% q(l) {-1-4- z cos[j(e-e(]‘))]} . (16)
r o, 2° .
i=1 j=1

This expression for the normal derivative of ¢
at the outer boundary does not contain explicit-
ly the coefficients Aj and Bj, which repre-
sent the shape of the model, and so it seems to
be local as well as homogeneous in the previous-
1y defined sense, One might suspect that the un-
xnown fluxes o', when resolved, will bring the



model back into the picture, but since they are
to be obtained by matching at the slots we ex-
pect them, of course, to be locally determined
in terms of & .

In preparation for the matching we deduct
from (15) the following immer representation of
the outer representation of ¢ at the slot
point k :

N o
301,8% x589 + T dUutN oWy,
i=1

(17)

(k)
¢=- ng in I‘(k)-l-

Here
. v .
oL g L5 L o 5(™-0W)), 14k,
j=1J
v
k. 1 1 .
e B.r U CT TR Y (18)
J=1
with r(i’k) denoting the distance between the

slot points i and k . The dominating part of
the remainder corresponds to a tangential flow
past the slot point,

7. Inner Representations and Matching

The inner flows might be analysed either in
the transformed or the original cross-flow plane
since the matching will involve only ¢ and the
q'¥, which are all invariant under the conformal
mapping, We choose to work in the original plane
as being clearly the simplest alternmative,

As explained in general terms in Section 2,
we shall work with a simplified slot flow model
(Fig. 1) in which fast air from the test section
enters the plenum chamber as a jet while, in re-
verse flow, the fast air in the slot returns to
the test section without separation, letting in
quiescent air behind it to form a longitudinal
separation bubble at plenum pressure p. (k) .
Since the boundary S between the two masses
of air is not precisefy defined in the model, we
can use this freedom to simplify the computation
of the inner representation. More specifically,
we shall assume, at least in the steady case,
that for any given family of similar slot cross-
sections we can restrict ourselves to one basic
cross-flow solution, taking the different posi-
tions of one of its material curves to represent
possible free-boundary curves S, . Then the
slot flow model is essentially complete as soon
as we prescribe the curve § at which the
pressure condition is to be saggsfied when there
is a jet into the plenum chamber and at which the
Jjet is to be taken to split when the flow revers-—
es. Introducing Cartesian coordinates (z,y)
(Fig. 5), we take as the parameter for any curve
S its intersection vy with the y-axis; Ypo s
tge maximum value of D corresponds to Spo .

Now let a(x) be a measure of the width of
the slot. The velocity level in the slot and its
neighbourhood is given by d¥//a . With this
should be compared the velocity set up by a
streamwise variation of the slot width, as ex-
pressed by the normal velocity H in (3). As
this is proportional to da./dx s it is evidently
two orders of magnitude smaller in the limit
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Fig. 5. Slot geometry,

a = 0 and we can therefore safely neglect it
when computing the cross-flow. In addition to a
sink-like flow into the slot, the geometry allows
a flow essentially parallel to the wall, Its
velocity is determined by the outer flow and is
consequently 0{q'®). We can neglect this flow
component, too, when writing down the inner re-
presentation of ¢ to the lowest order; it
should be included in the next order approxima-
tion, however.

We first solve the sink-flow problem with
a 1, q(k) = 1 and with vanishing potential at
y = z = 0, (How this can be done is demonstrat-
ed in Appendix 2 for the particular geometry of
Fig. 5.5' Let this normmalized potential be
Q(z,y). Then our inner representation is

k k

o = ™ d".q(s/a, v/a) , (19)
vhere ¢(k) (x,t) is the value of ¢ for slot k
at y =z =0 (if necessary extrapolated from

Sp by Q) .

Far away into the test section Q has the
representation

n

A=) = - erro( )

where
. 1 ()

R=I&5f.w(cz+;mr ) . (20)

The corresponding representation of ¢ is
(k)
6 = 6" L m(™/a) + MR+ 05
r

and this can be matched to the outer representa-
tion {(17). Hence

i=1
(21)

- q(k)(% in a+R) .

This important result permits us to relate )
locally to the plenum pressures.

8. The Plenum Pressure Condition in Steady Flow

So far the analysis applies in its main fea-
tures to unsteady as well as steady flow. We
now. restrict ourselves to the steady case (to
return later for a brief discussion of the un-



steady case)., We can then apply the pressure
condition (5), which gives at z = 0, y = yp or

ypo
(k) g
lod e - §®
b3 (L) =, (22)
vhere v, (yp/a) is the value of the y-deriva-
tive of the normalized potential Q at z = O on

S,. It is sufficient to satisfy the condition
at z = 0 if the variation of flow velocity on
the boundary curve is small, as we shall assume
in concordance with our simplified description
of S,. In order to keep track of yp(x) when
it is smaller than vy, o ©one has to solve the
differential equation

dy (k)

T = v /e (23)

marching downstream from x =
and taking a new initial value
the jet splits on flow reversal.

X4 9 Where

Yp = 0,
Ypo each gime

Inserting ¢ from (19) into (22), with ¢(k)
from (21), we obtain the pressure condition in
the form

N o
& 30,9 4+ 5 QWM

i=1

+ q(k)[Q(O yp/a)- R -% in a:\\} +

+ %(q(k)vp/a)z = g (k=1,...,N) . (24)

If all the fluxes qPJ(x) are known this, is an
ordinary differential equation for 5(1,&k 3x )
which can be integrated together with (23),
starting with a known value for ¢ at the be-
ginning of the slot.

9. On Outer Boundary Conditions for
Transonic Flows

At this stage, before we attempt to construct
an outer boundary condition from the raw material
gathered in the preceding sections, it might be
useful to consider what sort of a boundary con-
dition we should like to have.

We are now concerned with steady flows only,
so the differential equation with which to use
the boundary condition is

4% = [V -1 M (v1)3, 00, . (25)

Typically, with those unbounded transonic flows
for which the small-perturbation analysis is
valid, the right-hand member is small compared
to the cross-flow derivatives constituting the
left-hand member. We expect this to be true
also in the present case, at least to the extent
that we have been successful in designing a slot-
ted test section with small interference, This
means of course that the cross flow in any plane
X = constant is approximately volume conserving
so that as much volume flux as entering at the
inner boundary, there determined by the shape of
the model, must leave through the outer boundary
at about the same cross section. This comstitutes a
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strong restriction on at the outer boundary
in terms of at the inner boundary, suggest-—
ing that we might run into difficulties if we
try to prescribe the normal derivative at the
outer boundary.

These considerations come sharply into focus
in the case of axisymmetric flow in the slender-
body approximation, that is with the right-hand
member of (25) neglected. Then the perturbation
potential @(x,r) takes the form

re. = s'(x), @ =s'(x)* nr+o(x,1),
where s(x) is essentially the cross-scectional
area of the body, 1In this casc the radial vel-~
ocity is everywhere exactly determined by the
inner boundary condition, at the body, and only
the potential itself can be prescribed at an
outer boundary (at r= 1, say). Therefore we ob-
tain a reasonable slender-body solution if the
outer boundary is a jet boundary at prescribed
pressure, or a ventilated wall which responds to
the radial velocity s'(x) with a well-defined
pressure distribution. On the other hand, with
a solid wall, at which zero normal derivative
must be prescribed, there is no solution at all.
Then the right-hand member must be retained in
(25), accounting for the raised blockage inter-
ference level typical of choking.

We shall therefore attempt to obtain our
outer boundary condition in the form

on S (26)

¢ = ?J[q’n] ’
where Z[ ] is a regular functional over Sy
(it becomes singular in the limit of' a solid
wall, of course). This choice carries with it
the suggestion that in solving (25) by an itera-
tive numerical method one should march back and
forth between the model and the outer boundary,
arriving each time at the outer boundary with an
improved normal velocity to give, by (26), an im-
proved pressure distribution to be carried back
to the model. It is reassuring to be able to
note that employing such a scheme speeds up cone
vergence, in particular in subsonic regions .
Our philosophy also suggests that the finite-
difference approximation for the left-~hand member
of (25) should be a conservative one,

The choice of (26) should not, however, preo-
clude interest in the inverse functional, 1 ,
giving @, in terms of . Actually, if we arc
to adopt the idea of a 'self-correccting' test
section, presently being pursued in sceveral labe
oratories, then a viable scheme might be to meas-
ure the wall pressure distribution along slats,
essentially ¢, and hence compute the normal vol-
ocity @n rather than trying to measure it. For
this Z-! would be needed (togother with a pro-

cedure for obtaining @ from ¢ ; sce Scc~
tion 12). One would next have to compute the
unbounded flow outside 8y, using ®,; 1in an

inner boundary condition and obtaining an esti-
mate of what © should be on S, in order to
be free of interference. Using again the same
@ » one would then adjust the test parameters
so as to make ®, computed by (26) with the ad-
Justed Z’, equal to @ obtained from the outer
flow. Repeating this cycle as long as the re-



quired wall adjustments can be realized, employ-
ing alternately % -! and , one should end up
with a slotted wall of minimum interference.
Running the cycle backwards, adjusting @, for
equality rather than @ , would seem to be in-
viting difficulties.

10. Constructing the Outer Boundary Condition

According to the prescription of Section 4

for the boundary condition on §S,,, P is to be
related to §, in the same way as J is re-
lated to @,. To the extent that we have estab-

lished this relationship it is contained in Equa-
tions (16), (23) and (24).

We take (16) as a starting point since it
contains the normal derivative, the argument
function of % . Substituting @(x,r,8) for
F(r,83x) and specializing 6 to the slot posi-
tions, we obtain

N v . :
z {%+ z cos[j(e(k)— o™ )]} q(l)
i1 j=1

= ﬂ~<—pr(x,1,9(k)) (k=1929'-"N) . (27)

This a linear system which determines, for each
X, the slot fluxes in terms of @, . The coef-
ficient matrix is independent of x and can be
inverted numerically and stored as soon as the
slot locations have been decided. Thus it is
very simple to calculate the slot fluxes from 51"

Next we integrate the equations (23) to de~
termine the flow penetration depth in the slots.
This is straightforward, taking one slot at a
time. Now the slot geometry is involved, how-
ever, so the integration must be repeated each
time we make a wall adjustment.

From (24), finally, we obtain the value of
the potential at the slot positions,

#(x,1,89) = ¢ - [@(0,7,/2)-R -1 1 a1q™ -

‘.g ulbMg) - | [Jz-(qu"vp/a)a+ ) ax

i=1

(k= 1,...,N), (28)

satisfying at x = x, the upstream condition
for % assumed in Section 3. The right-hand
member is now completely known. It would re-
main valid if we were to allow the plenum pres-
sures to vary with x.

It is primarily Equation (28) we must ana-
lyse when we want to adjust slot flow parameters
so as to produce the wall pressure distribution
corresponding® to interference~free flow, There
will always be interference around the entrance
section at x=x,. The test parameters, inclu-
ding the direction of the unbounded flow we are
trying to simulate, should be selected in such
a way as to make this interference small and
local. Also, note the singular behaviour of
aﬁ( X,, where not only a vanishes but also
q'®) (Since Grad 3 = 0 over the whole plane
x=X,). One cannot expect
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K, (x),?
Az 10 e Byt )+ 9]

to be well-determined since 1im(q0d/a) will
never be known with any precision. This gives
us, perhaps, the opportunity to specify
1im(q®&l/a), which is also needed in Eq. (23),

in such a way that @, takes the value corre-
sponding to the chosen entrance Mach number Mo N
thus avoiding a spurious velocity jump at X=X .
In practice the achievement of a smooth entrance
flow might require a proper choice of plenum
pressures.

In order to complete the construction of the
functional we have only to define © between
slots. In accordance with our method of analysis
this is done, in each plane x = constant, by tri-
gonometric interpolation of order v . Obviously
v must be chosen so as to make 2u+ 1 equal to
N at most ;3 wusually it will be smaller. This
means that usually we cammot satisfy the condi-~
tions (28) precisely. A least-squares fit could
then be used, which again calls for storing a
pre-computed constant matrix, The deviations, of
course, correspond to higher order components to
be filtered out. Since both (23) and (28) are
non-linear with respect to q? such components
will arise even if not present in the @, used

in (27).

The inverse functional is not so easily con-—
structed, due to the non-linearity of the equa-
tions from which are determined the fluxes q(l)
corresponding to a given potential on S, . An
iterative scheme must be set up. Once the
fluxes are known, the normal derivative is im-
mediately obtained from (27) at the slot posi-
tions., The construction is again completed by
trigonometric interpolation.

11, Symmetric Flow

As a simple application consider the case of
an axisymmetric body along the axis of a circular
test section with N uniformly distributed iden-
tical slots (N > 1). From symmetry, the flow is
periodic with respect to © with period 2n/N ,
The potential ¢ will therefore be independent
of 6 to order N-1 in a trigonometric expan=
sion. Since N-1 is larger than (N=-1)/2, the
upper bound for v, we conclude that is
independent of 6., Actually, since the flux
through each slot is given by

g=d §_(x,1), a=2" (= arc length between slots)
r N
(29)
and is independent of v, we will get the same
$(x,r) for all permitted values of u.

Equation (29) takes the place of (27). It
remains to consider (23) and (28). Noting that
in the present case

N
2 H(lik)

=-":1;.¢nN ’
i=1

we obtain

d
il

= (30)

d5.(x,1) ,

v &
pa



and x

3x,1) = 9= Ko, (x,1)- [[ 20w, & 5.) +8]ax, (31)

with °

1 2d
K=d[; Ln;‘-;- (32)

%mh-m Q(O,yp/a)] .

Bquation (31) agrees with the classical for-
mula, augmented by a quadratic cross~flow term
in the mammer of W.W. Wood®. It is shown in
Appendix 2 that Equation (32) is a second order
approximation for small a/d to the classical
as well as the generalized4 K.

It may seem remarkable that @ is independ-
ent of ©. It does not mean, however, that the
wall interference is totally independent of the
number of slots, not even for a fixed . In
adding slots we suppress successively higher
harmonics which were neglected in @ (but pres-
ent in ¢ ) when the slots were fewer.

The outer boundary condition ©§ = F [%.] as
constituted by Equations (30), (31) and (32) has
been tested quite extensively ” with the numeri-
cal method of Ref. 13. No difficulties were
found except where the slot width was very small,
smaller than normally used, in which case the
convergence became slow, This is of course not
surprising since - is singular in the limit of
a solid wall.

12, Analysis of Wall Pressures

For a further application, assume that we
want to determine ® on S, by measuring the
pressure distribution along slats, at constant
8 =0, % o) say. We first integrate (4) along
the slat to get ¢ (the quadratic cross-—flow
term can be neglected in this case). Then from
Bquations (7) and (15) we have

P=9¢+o -9
N . Y
= o425 g (1) 1 i i
=9+=-Zq {znrw +Z ‘:],"COS{J(GW—-S(]-))]} (33)
i=1 j=1
where rx}n is the cross-flow distance from a

pressure tap to the slot point i. 1In the case
of symmetric flow with 8, half way between
slotshthis reduces to the result obtained in
Ref. 4,

The application of (33) is straightforward
if we know the fluxes, but we don't in the inter-
gsting case when we want to determine qﬁJ and
9r by applying X' to § ., However, 3 - &
has the character of a small correction, so
there is little doubt that an iterative scheme,
using successively improved estimates for q'V,
will converge rapidly. This is not really very
much of a complication., 7! has to be computed
iteratively anyway,

13. Unsteady Flows

In the first seven sections the analysis
applies in its main features also to unsteady
flows. TIa the pressure condition (5), however,
we must add @t/U to By s recognizing at the
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same time that the free surface Sp might move
and that the plenum pressures §' are no longer
known in advance since pressure waves may propa-—
gate into the plenum chamber, The simplified
picture of the slot flow introduced in Section 7
should be extended to include a potential which
describes the cross flow due to the motion of
S, , in addition to the potential Q which de-
scribes the cross flow due to the obliqueness of
the flow. (This approach means, of course, that
we are assuming the slot width to be small com~
pared to typical wave lengths of the unsteady
flow,) The additional cross flow is somewhat
different in that it involves the quicscent air
of the plenum chamber as well as the fast air in
the slot. This will also add a new contribution
to the right-hand member of Eq. (23) for Sp,
the left-hand member of which, of course, now
becomes [o/3x + (1/U)a/6t]yp . All these effects
combine to make the pressure condition correspand-
ing to (2&) rather complicated in its final form.
In order to account for fluctuations in élh
we must analyse the wave propagation in the plen-
vum chamber, a forbidding task., The simplest case
arises if the plenum chamber is so large that only
waves propagating from the slots into the plenum
chamber contribute to the pressure fluctuation
on Sy, + 8y . These waves correspond to the ad-
ditional, non-steady part of the slot flow and
so can be analysed, assuming a known steady pres-
sure deeper inside the plenum chamber. In the
next more complicated case one would have to
account for varying plenum pressure in the mamer
of the classical Helmholtz resonance analysis.
It seems that in these two cases there is a rea-
sonable chance to be able to complete the ana-
lysis and construct a homogeneous boundary con-
dition for the test section flow. It will per-
haps be necessary to linearize the problem,
assuming the unsteadiness to be a small perturba-
tion of a steady flow.

14, Wall Interference Corrections.
Test Section Calibration.

Suppose we have succeeded in adjusting the
test parameters so as to make the interference
negligible at the model. Then three wall correc-
tions of classical type are immediately available
from this process: a Mach number correction
(: M-Mo), an angle-~of-attack correction (= the
angle of attack of the test section with respect
to the direction of the unbounded flow simulated),
and an angle-of-yaw correction (= the correspond-
ing angle of yaw of the test section).

The other classical corrections, those for
induced buoyancy and flow curvature, are rightly
absent. As soon as they are needed there is a
distortion of the pressure distribution over the
model that cannot be tolerated. 1In contrast,
the former corrections are not asscciated with
any such distortion and should be permitted to
be large if it helps in reducing the interfer-
ence., This is "the principle of minimizing
interference rather than corrections"!?, implying
the concept of a "correctable~interference trans-
sonic wind tunnel'®,

There might be
test section flow,
for when computing
turbances from the

other errors present in the
errors which are not accountoed
the wall interference, Dis-
entrance section upstream of



the slots, axial gradients set up by the wall
boundary layers or by improper alignment of the
walls, or upstream influence from the sting
arrangement are examples, The main tool for
handling such errors is "calibration", running
the test section empty with the walls and plenum
pressures set for uniform flow. Such errors
should be eliminated by proper adjustment of the
test section, not by introducing corrections to
the test data. The practice of using the Mach
number of the empty test section, calibrated
against the plenum pressure, as a free-stream
reference Mach number for model tests does not
seem to make sense in the context of the present
theory.

15. Concluding Remarks

The present inviscid theory of wall inter-
ference in slotted test sections generalizes to
three-dimensions the theory for two-dimensional
tests developed on a classical basis® ¥ in
Ref. 4, 1In analysing the local flow at each
slot separately, the structure of the theory is
such as to facilitate later inclusion of correc-
tions to account for viscous effects inside the
slots and the plenum chamber, A first attempt
in this direction has already been made and
as more extensive comparisons with experiment
are completed it might become possible to extend
and delineate the area where the inviscid theory,
with or without corrections, might be used with
confidence. The interaction of shock waves with
the slot flow must be studied, in particular.

Meanwhile the inviscid theory can be used
for running mumerical experiments. These will
show how accurately one must describe the action
of the slotted wall in different types of appli-
cation, and what wall adjustment facilities one
must provide in order to eliminate the wall in-
terference. They will also help developing
strategies for efficient use of adjustable slot-
ted walls in future wind tummels.
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Appendix 1 — Symbols
a(x) Slot width; Fig., 5
d Arc length between slots; Eq. (29)
Grad, A Differential operators in plane x =
constant
F, F'  Functionals on S, 3 Eq. (26)
#bX gq. (1)
K(x) Coefficient in slotted-wall boundary
conditiony Egs. (32), (A-8) and (A-12)
M Mach number of reference flow
Mo Entrance Mach number; Fig. 2
N Number of slots
p Pressure
plfi) Pressure in plenum chamber i
Poo Pressure of flow at Mach number M



Q(z,y) Normalized slot flow potential; Eq. (19)

ql}(x,t) Flux through slot i ; Eq. (12)
R Eq. (20)
T Radius vector in cross-flow plane
r,o Polar coordinates in cross-flow plane
i) Distance from slot point i ; Fig. 4,
Eq. (11)
i,k .
Ql’} Distance between slot points i and kg
Eq. {18)
Sm Cylindrical surface enclosing the model
and its wake; Fig, 2
Sp Free surface between fast air and
quiescent plenum airj Fig. 1
bo Surface at plenum pressure across jet
on plenum side of slot; Fig. 1
Sw Outer boundary of test section; Fig. 2
t Time
U Flow velocity at Mach number M
vpyp)  =23QRy at y =y, z=0;Eq. (23)
b4 Distance along tunnel axis; Fig. 2
X, Location of entrance section; Fig. 2
Y2 Cartesian coordinates at slotj Fig. 5
Yp Coordinate of S on slot centre linej
Fi, P
g« 5
Y. Coordinate of S on slot centre line;
po Fig. 5 po
Y Ratio of specific heats
&) Non dimensional plenum pressure dif-
ference; Eq. (5)
©s9 Perturbation velocity potentials;
Egs. (1) and (6)
6,0 Harmonic functions in cross-flow plane;
Eq. (7)
v Highest order considered in harmonic
analysis of interference; Eq. (8)
Qe Density of flow at Mach number M

Appendix 2
Simplified Analysis of Slot Flow

As a basis for analysing the slot flow for
the geometry of Fig. 5, consider the symmetrical
flow of unit flux from a half plane into a slot
of unit width and unlimited depth (see sketch).
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We shall determine the velocity potential Q(y,z),
normalized to vanish at the origin.

This is accomplished by mapping the flow
region conformally onto a half plane (-m £ ¢ S0
in sketch), transforming the slot extremity

Yayd
s

(z = i) into the origin and leaving the far
field undisturbed. The required complex trans-
formation is

Z =z + iy
N e /2 .2 -21id . -id
- elélsa-cze‘ala-j.c i LS=0%e - +ige ,
1
U=;1 (A'1)
where (s,é) are polar coordinates in the trans-

formed plane (. The exterior wall and the slot
walls are mapped onto the real axis with the
corner points at #*o= % 1/m, The origin goes
into a point on the negative imaginary axis, at
distance s from the origin, say. The flow is
that of a sink at the origin, hence

1 S
- in .

: (a-2)

Q

This gives, according to Eq. (20), R = (l/n)hlso.

As the material curve to represent, in its
different positions, possible free-boundary curves
Sy, » we choose one which far into the slot is a
straight line across the slot. In the trans-
formed plane the curve, when close to the origin,
is a circle, In order to determine its develop-
ment we can integrate along streamlines (rays) in
the transformed plane. Points on the same curve
must have the same value of the parameter

t(sﬂ,) = I l%%!zs ds (A“B)
€

where ¢ is a small positive number. After the
curves have been determined in the {~-plane they
have to be transformed back into the Z-plane.

This has not been carried out yet.

For our immediate purpose it is sufficient
to consider the intersection vy, of S, with
the axis of symmetry. This point is mappced on
the negative imaginary axis, at the distance s

from the origin, say. The value of Sp is ob-
tained from the equation
. jJs 2+ 0% -0a
2 p - -t
s ®+0°+0 fn . =~ ==Y, o (A-4)

which gives, in particular, s, = s, = 0.2110 for
vy = 0. Once s _(y.) is known, it is straight-

forward to compute pQ and vp 3



(o )R 1 1 dins
Q(o,y, _-ﬂmsp’vp=--\;__—_2dyp . (a-5)

Iir ¥p is well inside the slot we can take

sx/o to be small., Expanding the square root in
(A-4), the following second order approximation
is obtained:

=2(wy_+1)
= 2 P
—msp-l-hx“+nyp+e . (A-6)
Hence
=2(wy_+1)
-1 2 1 p
aO,y,) ~R=3 (1-mZ)uy sle ,
-2(my_+1)
=1 - P -
vo(r) =1 - 2 : (a-7)

Inserting into Eq. (32), we obtain

K-d[n‘“na*?; (1- D)+ y /ass e 4 ,

(a-8)

in complete agreement (to second order in a/d)
with the result of Ref.k4, at least for yp/a >0.1.

This result is valid if is inside the
slot. If the flow is leaving slot as a jet
into the plemmn chamber the analysis in Ref. 4
shows that Eq. (A-8) is still valid if y_/a is
changed into #/a + 0.22, where {4 is the depth
of the slot. In the present terminology this
means simply that we shall take

Ypo _
a

Pl

+ 0,22 , (a-9)
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When there is a 'bubble', for Y,
(A-4) can again be solved approximately.
result, for s, >> 0, is

< 0,Eq.
The

s, ==Y (1+gniﬂ;-1;-) R (a~10)

P

hence
=1 T
Q(O»Yp)- =5 h‘lYp- ar® ypa ’

11 5 1
Vo= U-"%F 7
P "Yp( It p

(a~11)

This is consistent with S becoming approxi-
mately a semicircle with Sentre at the origin
as soon as ypl >a . The corresponding result
for K is

1
K =d{}‘:

d 511, (a-12)
PEWT T w0 )

Finally, it might be noted that the preced-
ing analysis, with very minor modifications,
applies also to a slot located in a right-angled
corner. One has only to make the axis of sym-
metry into a wall and everything else follows.




